Pentacovalent Intermediate in the Arbuzov Reaction

By Aleksandra Skowrońska,* Jerzy Mikorajczak, and Jan Michalski*
(Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-362 Łódź, Boczna 5, Poland)

Summary Direct evidence by ${ }^{31} \mathrm{P}-\mathrm{n} . \mathrm{m} . \mathrm{r}$. spectroscopy is presented for the formation of a five-co-ordinate intermediate in the Arbuzov reaction of tervalent phosphorus esters with elemental chlorine or elemental bromine and benzenesulphenyl chloride.

In his classic work Arbuzov formulated the five-co-ordinate compound (1) as an intermediate in the reaction of trialkyl phosphites with alkyl halides and elemental halogens.1,2 Phosphonium salts were generally assumed to be Arbuzov intermediates ${ }^{2}$ and recently, in the case of sterically hindered phosphites, they have been isolated and characterized by ${ }^{31}$ P-n.m.r. spectroscopy. ${ }^{3,4}$ A phosphonium intermediate was also detected in the bromination of $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe} .{ }^{5}$ Recent results on the reaction of diastereoisomeric cyclic phosphites with alkyl halides revealed a lack of stereospecificity at phosphorus which was explained by the intermediacy of a pentacovalent intermediate ${ }^{6}$. To our know-
ledge there is no reported direct evidence for a five-co-ordinate intermediate in the Arbuzov reaction.

(1)

Equimolar quantities of the phosphite (2) and Cl_{2} in EtCl solution were allowed to react in a sealed n.m.r. tube at $-85^{\circ} \mathrm{C}$. The n.m.r. spectrum showed only the presence of the five-co-ordinate intermediate (3a) with a characteristic high-field chemical shift $\left[\delta\left({ }^{31} \mathrm{P}+35\right.\right.$ p.p.m.] relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. At $-40{ }^{\circ} \mathrm{C}$ a new peak appeared [$\delta\left({ }^{31} \mathrm{P}\right)$ -19 p.p.m.] corresponding to the phosphorochloridate (4a).

In the reaction of (2) with elemental bromine under the same conditions, the phosphorane intermediate (3b) [$\delta\left({ }^{31} \mathrm{P}\right)$
+195 p.p.m. and the phosphorobromidate (4b) [$\delta\left({ }^{31} \mathrm{P}\right)$ -3.5 p.p.m.] were the only observed components of the systems.

(4)

$$
\begin{aligned}
& \mathbf{a} ; \mathrm{X}=\mathrm{Y}=\mathrm{Cl} \\
& \mathbf{b} ; \mathrm{X}=\mathrm{Y}=\mathrm{Br} \\
& \mathbf{c} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Ph}
\end{aligned}
$$

$$
\begin{equation*}
(3 \mathrm{c})+\mathrm{PhSCl} \rightarrow(4 \mathbf{a})+(\mathrm{PhS})_{\mathbf{2}} \tag{1}
\end{equation*}
$$

observed by Chang and Denney in the reaction between the methyl analogue of (2) with ethyl benzenesulphenate. ${ }^{7}$ The proportions of the components of the system discussed, estimated by integration of the ${ }^{31} \mathrm{P}$-n.m.r. spectra, are as follows. At $-80^{\circ} \mathrm{C}$ two peaks were observed corresponding to $(3 \mathrm{c})\left[\delta\left({ }^{31} \mathrm{P}\right)+19 \cdot 3\right.$ p.p.m. $](85 \%)$ and (3a) $\left[\delta\left({ }^{31} \mathrm{P}+35\right.\right.$ p.p.m.] (15\%). At $0^{\circ} \mathrm{C}$ (3c) and (3a) had disappeared and two new peaks corresponding to (4 c) [$\delta\left({ }^{31} \mathrm{P}\right)-40.7$ p.p.m.] and (4a) [$\delta\left({ }^{31} \mathrm{P}\right)-19$ p.p.m.] (15%) were observed. Diphenyl disulphide was isolated and characterised independently. These results constitute the first characterisation of a five-co-ordinate intermediate in the Arbuzov reaction. A sequence of five co-ordinate, phosphonium, and dealkylation steps provide a plausible mechanistic interpretation of the Arbuzov reaction consistent with known experimental facts.

The reaction of (2) with PhSCl is somewhat more complex owing to the side reaction (1), which is similar to that
(Received, 28th July 1975; Com. 850.)
${ }^{1}$ A. E. Arbuzov, J. Russ. Phys. Chem. Soc., 1910, 42, 395, 549.
${ }^{2}$ R. G. Harvey and E. R. Sombre, 'Topics in Phosphorus Chemistry,' Vol. 1, eds. M. Grayson and E. J. Griffith, Wiley, New York, 1964, p. 57; B. Miller, ibid., Vol. 2, 1965, p. 133.
${ }^{3}$ A. J. Razumov, B. G. Liorbov, T. V. Zhykova, and J. Ya. Bambushek, Zhur. obshchei Khim., 1970, 40, 2009.
${ }^{4}$ H. R. Hudson, R. G. Rees, and J. E. Weeks, Chem. Comm., 1971, 1297; J.C.S. Perkin I, 1974, 982.
${ }^{5}$ G. K. McEwen and J. G. Verkade, Chem. Comm., 1971, 668.
${ }^{6}$ C. L. Bodkin and P. Simpson, Chem. Comm., 1970, 1579; J.C.S. Perkin II, 1972, 2049.
${ }^{7}$ L. L. Chang and D. B. Denney, J.C.S. Chem. Comm., 1974, 84.

